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Abstract−− The buoyancy driven, chemically re-

acting and radiative Casson fluid flow past an impul-

sively started permeable Riga-plate is investigated 

through the numerical solution obtained by Crank-

Nicholson implicit scheme of finite difference method. 

The main aim of this study is to control the boundary 

layer separation.  Escalating modified Hartmann 

number and the distance from leading edge of the 

plate reduces the viscous drag so that the separation 

can be controlled. Effects of permeability on the flow 

configuration are also elucidated. The results are val-

idated by comparing the solutions of literature which 

already exists. 

Keywords−− Riga-plate; Electromagnetism; Cas-

son fluid; EMHD Lorentz force; permeability. 

I. INTRODUCTION 

The applied external magnetic field has significant im-

pact on highly conducting fluids; however the weakly 

conducting fluids induce only less amount of current. As 

a result, an external magnetic field should be applied to 

achieve a powerful control in boundary layer separation 

(Magyari and Pantokratoras, 2011). The classical meth-

ods suction, blowing and motion of the wall hinder the 

separation of the boundary layer from the surface. This 

irregular flow behavior can be controlled by electromag-

netism, which provides convincing flow control on ac-

count of high electrical conductivity of the material 

(Weier et al., 2001). 

 Gailitis and Lielausis from physics institute at Riga 

designed an electromagnetic control system which is a 

span wise alternate arrangement of electrodes and perma-

nent magnets. This actuator is termed as Riga-plate. The 

influence of EMHD Lorentz force on free convection 

over Riga-plate is studied by Pantokratoras and Magyari 

(2009).  Magyari and Pantokratoras (2011) analyzed dou-

bly driven aiding and opposing flow characteristics using 

finite difference scheme numerically. It was observed 

that reverting flow displays reduction in the velocity.  

Nanofluid flow on a Riga-plate is also examined by many 

researchers in recent years. Various numerical solutions 

for nanofluid flow past a Riga-plate has been obtained by 

Abbas et al. (2017), Ayub et al. (2016), Rasool and 

Zhang (2019). Hayat et al. (2018) found the homotopic 

solution for a mixed convective fluid subject to radiation 

and double stratification on a Riga-plate. Pantokratoras 

(2008) estimated the exact solution of Blasius-Sakiadis 

flow with MHD Lorentz force or EMHD Lorentz force.  

 Non-Newtonian fluid characteristic is observed in 

many chemical and allied processing industries. Deter-

mining the rheological behavior of such material is 

highly complex. These fluids are highly consistent which 

can be processed under laminar conditions. A constitu-

tive relation which was found by Casson delineates the 

relationship between shear stress and rate of deformation. 

Cone-plate viscometer was used to exemplify this empir-

ical equation, when the pigments suspended in varnishes. 

This fluid is termed as Casson fluid (Oka, 1981). 

 Owing to the broad range of applications, much of lit-

erature and studies are directed towards the Casson fluid 

flow model.  Rao (2018) obtained the numerical solution 

using shooting technique for Casson fluid flow past a per-

meable stretching surface with thermal and mass diffu-

sion. A mathematical model for the Casson fluid flow 

with periodic variations in a porous channel was analyzed 

by Srinivas et al. (2018). Perturbation technique is used 

to obtain the analytical solution in this investigation. 

 Reza et al. (2016) examined the influence of suc-

tion/blowing on Casson fluid flow past a stretching sur-

face. A remarkable conclusion in this study is that the 

speed and heat transfer of the flow regulated substantially 

because of suction and injection on the wall.  Iqbal et al. 

(2017) centralized their priority to viscous dissipative 

and thermally radiative Casson fluid flow past a Riga-

plate subject to internal heat generation. The flow control 

attributes of Reiner-Phillipoff model and Powel Erying 

model over Riga-plate are scrutinized by Ahmad (2019). 

 In real time operations, electro-magnetic propulsion 

systems are distinct mechanisms from typical drive com-

ponents that are used in ship propulsion. The current 

which is passing through the fluid and involved in an ex-

ternally applied magnetic force produces Lorentz force; 

this phenomenon results in the propulsion of vessel to 

move forward. EMHD is also used as a recovery tool for 

oil spill on sea water by the action of pumping (Al-

Habahbeh et al., 2016). In some scenario, EMHD is a 

therapeutic remedy to regulate the poor blood flow. Cas-

son fluid flow model is the most suitable non Newtonian 

model for describing the characteristics of human and 

cattle blood. The theoretical investigation associated with 

EMHD Casson fluid with moving boundary may also be 

considerate in the pumping of blood flow to modulate its 

circulation.  

 This numerical investigation intended towards the 

mechanical properties of Casson fluid past a vertically 

moving permeable Riga-plate. The transient flow config-

uration is constructed for a radiative Casson fluid subject 
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to both MHD and EMHD Lorentz force with unimolecu-

lar chemical reaction.  A comparison study has been per-

formed to ensure the accuracy of the present results. 

II. MATHEMATICAL ANALYSIS 

Consider a gravitationally driven chemically reacting and 

radiative Casson fluid flow over a permeable impulsively 

started vertical Riga- plate. The semi-infinite vertical 

plate is setting idle for an initial stage and the ambient 

temperature 𝑇∞
∗ , concentration 𝐶∞

∗  are persisted by the 

fluid. The plate is actuated vertically upwards with a con-

stant speed 𝑢0 at 𝑡∗ > 0. Temperature of the plate is in-

creased to 𝑇𝑤
∗ (> 𝑇∞

∗ ), and concentration near the plate 

surface is boosted up to 𝐶𝑤
∗ (> 𝐶∞

∗ ). The temperature and 

concentration reaches the asymptotic state and the veloc-

ity diminishes to zero while the fluid flow away from the 

surface. The coordinate system is constructed on the ba-

sis of fluid motion. The vertical fluid motion is entitled 

as x direction and the y direction is normal to the plate. u 

and v are the velocities along vertical and transverse di-

rections respectively. Optically thick and non scattering 

conditions are considered. The homogeneous first order 

chemical reaction is under consideration. The Riga-plate 

setup has been illustrated in Fig 1. 

 The flow configuration of Casson fluid can be ex-

pressed by the following constitutive relation (Mustafa et 

al., 2014; Shateyi et al., 2017) 

𝜏𝑖𝑗 = {
2(𝜇𝑏 + 𝑃𝑦 √2𝜋∗⁄ )𝑒𝑖𝑗 , 𝜋∗ > 𝜋𝑐

∗

2(𝜇𝑏 + 𝑃𝑦 √2𝜋𝑐
∗⁄ )𝑒𝑖𝑗 , 𝜋∗ ≤ 𝜋𝑐

∗
. 

Here, 𝜋∗ = 𝑒𝑖𝑗𝑒𝑖𝑗  and 𝑒𝑖𝑗 is the (i, j)th component of the 

shear rate. The physical problem governed by the Prandtl 

boundary layer equations that evince the above condi-

tions, constitutive equation and Boussinesq approxima-

tion can be described as (Schlichting, 1979) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

 
𝜕𝑢

𝜕𝑡∗ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (1 +

1

𝛽
)

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽′(𝑇∗ − 𝑇∞
∗ ) + 

 𝑔𝛽∗(𝐶∗ − 𝐶∞
∗ ) +

𝜋𝐽0𝑀0𝑒−𝜋𝑦 𝑙⁄

8𝜌
−

𝜎𝐵0
2𝑢

𝜌
−

𝑢𝜐

𝜆∗ , (2) 

 
𝜕𝑇∗

𝜕𝑡∗ + 𝑢
𝜕𝑇∗

𝜕𝑥
+ 𝑣

𝜕𝑇∗

𝜕𝑦
= 𝛼

𝜕2𝑇∗

𝜕𝑦2 −
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
, (3) 

 
𝜕𝐶∗

𝜕𝑡∗ + 𝑢
𝜕𝐶∗

𝜕𝑥
+ 𝑣

𝜕𝐶∗

𝜕𝑦
= 𝐷

𝜕2𝐶∗

𝜕𝑦2 − 𝑘′(𝐶∗ − 𝐶∞
∗ ). (4) 

 

Fig. 1. Arrangement of electrodes and magnets in Riga-plate. 

 Preferable initial and boundary conditions of the 

physical problem are     

𝑡∗ ≤ 0, 𝑢 = 0, 𝑣 = 0, 𝑇∗ = 𝑇∞
∗ , 𝐶∗ = 𝐶∞

∗   for all x and y, 

𝑡∗ > 0, 𝑢 = 𝑢0, 𝑣 = 0, 𝑇∗ = 𝑇𝑤
∗ , 𝐶∗ = 𝐶𝑤

∗   for y=0, 

 𝑢 = 0, 𝑣 = 0, 𝑇∗ = 𝑇∞
∗ , 𝐶∗ = 𝐶∞

∗   for x=0, (5) 

𝑢 → 0, 𝑇∗ → 𝑇∞
∗ , 𝐶∗ → 𝐶∞

∗   as y→ ∞. 

Here 𝛽 = 𝜇𝑏√2𝜋𝑐
∗ 𝑃𝑦⁄   is the Casson parameter. In the 

energy balance equation, 𝑞𝑟 = − 4𝜎∗

3𝑎′⁄ 𝜕𝑇∗4

𝜕𝑦⁄  de-

notes the Rosseland approximation (Brewster 1992). 

 Non dimensional quantities employed on the coupled 

highly non-linear partial differential Eqs. (1-4) are taken 

as 

𝑋 =
𝑥𝑢0

𝜐
, 𝑌 =

𝑦𝑢0

𝜐
, 𝑈 =

𝑢

𝑢0
, 𝑉 =

𝑣

𝑢0
, 𝑡 =

𝑡∗𝑢0
2

𝜐
, 

𝑇 =
𝑇∗−𝑇∞

∗

𝑇𝑤
∗ −𝑇∞

∗ , 𝐶 =
𝐶∗−𝐶∞

∗

𝐶𝑤
∗ −𝐶∞

∗ , 𝐺𝑟 =
𝑣𝑔𝛽′(𝑇𝑤

∗ −𝑇∞
∗ )

𝑢0
3 , 

𝐺𝑐 =
𝑣𝑔𝛽 ∗(𝐶𝑤

∗ −𝐶∞
∗ )

𝑢0
3 , Pr =

𝜐

𝛼
, 𝑁 =

𝜅𝑎′

4𝜎∗𝑇∞
∗3, 𝜆 =

𝜆∗𝑢0
2

𝜐2 ,  

𝑀 =
𝜎𝐵0

2𝜐

𝜌𝑢0
2 , 𝐾∗ =

𝑘′𝜐

𝑢0
2 , 𝑆𝑐 =

𝜐

𝐷
, 𝑃 =

𝜋𝐽0𝑀0𝜐

8𝜌𝑢0
3 , 𝑆 =

𝜋𝜐

𝑙𝑢0
. 

 Dimensionless form of (1-5) are given by 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0, (6) 

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= (1 +

1

𝛽
)

𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑇 + 𝐺𝑐𝐶 + 

 𝑃𝑒−𝑆𝑌 − 𝑀𝑈 −
𝑈

𝜆
, (7) 

 
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
=

1

Pr
(1 +

4

3𝑁
)

𝜕2𝑇

𝜕𝑦2, (8) 

 
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑌2 − 𝐾∗𝐶. (9) 

 Initial and boundary conditions in terms of non-di-

mensional quantities are     

𝑡 ≤ 0, 𝑈 = 0, 𝑉 = 0, 𝑇 = 0, 𝐶 = 0  for all X and Y, 

𝑡 > 0, 𝑈 = 1, 𝑉 = 0, 𝑇 = 1, 𝐶 = 1  for Y=0, 

 𝑈 = 0, 𝑉 = 0, 𝑇 = 0, 𝐶 = 0  for X=0, (10) 

𝑈 → 0, 𝑇 → 0, 𝐶 → 0  as Y→ ∞. 

III. NUMERICAL SOLUTION 

Solutions of two dimensional non-linear partial differen-

tial Eqs. (6-9) together with the initial and boundary con-

ditions (10) are acquired by finite difference scheme, 

namely Crank-Nicholson implicit method. The solution 

procedure starts with the discretization of the above sys-

tem of partial differential equations. Each term trans-

formed to a finite difference approximation of corre-

sponding order.  The approximation converts the system 

to a set of linear algebraic difference equations. The co-

efficient matrix of this system is a tri-diagonal matrix.  

 Using tri-diagonal matrix algorithm, velocity U, tem-

perature T and concentration C were obtained (Carnahan 

et al., 1969). The uniform grid spacing Δ𝑋 and Δ𝑌 with 

Δ𝑡 time steps are considered.  The values of 𝑋 and 𝑌 as-

signed to 𝑖Δ𝑋 and 𝑗Δ𝑌, respectively. Domain of integra-

tion is a rectangle with Xmax=1.0 and Ymax=14.0. Here 

Ymax  describes the value of 𝑌 at  which is far away from 

the momentum, thermal and concentration boundary 

layer. The truncation error approaches zero as Δ𝑋, Δ𝑌 

and Δ𝑡 → 0. The scheme is unconditionally stable and 

convergent. After obtaining velocity, temperature and 
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concentration the other flow characteristics skin friction, 

Nusselt number and Sherwood number can be evaluated 

by the following expressions 

𝜏𝑋 = − (1 +
1

𝛽
) (

𝜕𝑈

𝜕𝑌
)

𝑌=0
, 𝜏̅ = − ∫ (1 +

1

𝛽
) (

𝜕𝑈

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
, 

𝑁𝑢𝑋 = −𝑋 (
𝜕𝑇

𝜕𝑌
)

𝑌=0
, 𝑁𝑢̅̅ ̅̅ = − ∫ (

𝜕𝑇

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
, 

𝑆ℎ𝑋 = −𝑋 (
𝜕𝐶

𝜕𝑌
)

𝑌=0
, 𝑆ℎ̅̅ ̅ = − ∫ (

𝜕𝐶

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
. 

IV. RESULTS AND DISCUSSION 

To estimate the reliability of the current results, compar-

ison of velocity has been done with the already available 

study of Pantokratoras and Magyari (2009). This is made 

under the conditions that the plate is stationary and 𝜆,𝛽 →
∞, Gr=Gc=M=0, P=S=1. Pantokratoras and Magyari 

have given an extensive steady state analysis of EMHD 

effects on a horizontal Riga-plate with the only driving 

force as electromagnetic body force. Precisely, the work 

is focused on the study of the skin friction and the veloc-

ity along the different distances from the leading edge. 

The non uniform grid spacing is taken into consideration 

while finding solutions by finite difference method. The 

present investigation is imperatively driven by the buoy-

ancy force over a vertically oriented Riga-plate and the 

thermal, mass diffusion behaviour has also been dis-

cerned under unsteady circumstances. However, the dis-

cussions are carried out for the achieved steady state so-

lutions. Besides, the boundary layer equations are solved 

with uniform step sizes.  

 The values of temperature and concentration are val-

idated with the solutions of Gebhart and Pera (1971) for 

Pr=Sc=0.7, Gr=Gc=2, K*=0, P=0, M=0, N, 𝜆,𝛽 → ∞. 

The investigation which was done by Gebhart and Pera 

focused on the influence of natural convection on vertical 

flow. The exactness and excellent correlation of the anal-

ysis is ensured in Fig. 2.   

 Figure 3 depicts the influence of pertinent parameters 

on velocity field.  For P>0, speed of the flow increases 

due to the fluid flow along the main stream velocity. This 

refers to the aiding flow characteristics of the fluid. How- 

 

Fig. 2. Correlation of flow properties. 

 
Fig. 3.  Steady state velocity profiles at X=1.0.    

ever, the fluid encounters the additional viscosity in the 

case of opposing flow (P<0) which results in the velocity 

drop and the steady state reaches at the elongated time 

level. Uplifting the permeability parameter 𝜆 leads to the 

growth in the velocity boundary layer. Owing to higher 

viscosity, the fluid flow experiences the resistance for in-

creased values of Sc. Velocity of the fluid decays in re-

spect of the reactant, i.e. rise in the values of chemical 

reaction parameter K* slow down the speed. The velocity 

reaches the steady state at the larger time level with the 

increased values of 𝜆, Sc and K*. The time at which the 

velocity attains its steady state temporarily (temporal 

maximum) is also displayed. 

 Figure 4 displays the aiding and opposing flow prop-

erties of Casson fluid at different distances from the lead-

ing edge of the plate. Aiding flow which is along the di-

rection of main stream velocity encounters the wall par-

allel Lorentz force that stimulates the flow velocity. A 

reasonable drop in the velocity is noticed (comparing to 

the aiding flow) when the Lorentz force acting opposite 
 

 
Fig. 4. Aiding and opposing flow characteristics. 
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Fig. 5. Temperature field for various parameters. 

to the flow direction. This is achieved by upturned the 

electrode’s polarity. However, the viscous drag is re-

duced in both the cases. When the distance from the plate 

and the values of P are increased, the flow is not more 

prone to boundary layer separation. This implies that the 

separation can be controlled by the elevation of modified 

Hartmann number and the distances from the edge.    

 The temperature dependent physical properties of 

Casson fluid are illustrated in Fig. 5. Temperature drop is 

observed for the improved values of Prandtl number ow-

ing to less physical strength of the thermal diffusivity. 

The lower molecular diffusion rate of heightened Sc de-

teriorates temperature distribution. Elevation in the 

chemical reaction rate (K*) between the fluid molecules 

enhances the temperature. Radiation controls the electron 

transport in the magnets, electrodes. This implies that the 

thermal energy declines for the raise in radiation param-

eter N. Temperature shoots up for the increased permea-

bility. On the other hand, elevated Casson parameter re-

duces the thermal diffusion. The modified Hartmann 

number P depends on the current density and magnetiza-

tion of the magnets. Raising the values of P results in the 

escalation of magnetization. Thus, the magnetic field 

strength reduces the temperature. In respect of height-

ened radiation parameter speeds up time to attain steady 

state. 

 In Fig. 6, the mass diffusion is displayed as a function 

of Y for the fixed values of some chosen physical param-

eters. Elevated chemical reaction parameter increases the 

reaction rate which in turn worsens the growth of the con-

centration boundary layer. While escalating the values of 
Sc, it causes the lower mass diffusivity that tends to re-

duce the mass diffusion in the species. The heightened 

values of Pr, N, M and β enhances the mass diffusion. Ex-

alting modified Hartmann number P, the deterioration is 

noticed in concentration subject to stronger Lorentz 

force. Time taken to reach the steady state increases for 

increased chemical reaction parameter, whereas it decays 

for Schmidt number. 

  
Fig. 6. Concentration distribution. 

 The local and mean skin friction coefficient has been 

analyzed in Figs. 7 and 8 respectively. Changes in the ve-

locity gradient with respect to viscosity and yield stress 

reports the skin friction on the surface. Raise in the values 

of Prandtl number affects the fluid motion with the high 

viscosity that creates the retardation in the flow i.e. the 

higher skin friction is observed. When K* is increased, 

concentration of the reactant is enhanced. This phenom-

enon boost up the friction between the fluid particles. 

Due to the bulk behavior of the fluid molecules, the fluid 

flow can easily approach the plate for bigger pores or 

large number of pores. This implies that the skin friction 

is higher for exalted 𝜆. Uplifting the values of P, the 

EMHD Lorentz force displays the lowest skin friction. 

The magnetic parameter and Schmidt number enhances 

the viscous drag locally on account of MHD Lorentz 

force and heightened viscosity respectively.  

 Variations in the local and average rate of heat trans-

fer explained in Figs. 9 and 10. Enhanced values of K*, 

slow down the heat transfer by virtue of high concentra-

tion of the reactant. Improved radiation parameter esca-

lates the heat transfer from high energy region to low en- 
 

 
Fig. 7.  Local skin friction coefficient. 
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ergy region. As a consequence of EMHD Lorentz force, 

the heat transfer boost up proportionately to the values of  

 
Fig. 8. Mean skin friction coefficient. 

 
Fig. 9. Local Nusselt number. 

 
Fig. 10. Mean Nusselt number. 

modified Hartmann number. The plastic dynamic viscos-

ity of increased Casson parameter weakens the heat trans-

fer. As the magnetic field has a control on the heat trans-

fer between fluid particles, higher values of M declines 

the heat transfer rate. Larger Prandtl number values en-

hance the temperature gradient which results in the up-

lifted heat transfer rate.    

 The rate of heat and mass transfer inside the boundary 

layer is explored through the variations of temperature 

and concentration gradients encountered in the fluid 

flow. The Nusselt number and Sherwood number which 

explains theses variations has been discussed along the 

plate surface. The average of gradients at each time level 

induces the case of thermal and mass transport in an av-

erage sense.  

 Figures 11 and 12 presents the local and average 

Sherwood number.  As a result of reduction in mass dif-

fusivity while increasing Sc, the improved concentration 

gradient is observed which boost up the values of Sher-

wood number. The high concentration of the reactant due 

to heightened K* strengthens the rate of mass transfer. 

The improved modified Hartmann number shoots up the 

mass transfer rate locally. 

 
Fig.11. Local Sherwood number. 

 
Fig. 12. Mean Sherwood number. 
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V. CONCLUSIONS 

Many investigations centralized the attention towards 

non-Newtonian fluid flow over a Riga-plate. This analy-

sis emphasizes the mechanical properties of Casson fluid 

flow past a Riga- plate subject to chemical reaction and 

thermal radiation.  The remarkable results have been en-

capsulated as follows. 

• Velocity of the flow field is elevated, as the Lorentz 

force pointing towards the mainstream velocity. The 

reverse trend is noticed for opposing flow.  

• The boundary layer separation has been controlled for 

elevated values of P and distance from the leading 

edge. 

• Improved radiation parameter escalates the rate of 

heat transfer. 

• Raising the values of permeability parameter in-

creases the flow speed and wall shear stress. 

• Local and mean mass transfer rate is boosted up for 

higher values of Schmidt number, although the thick-

ness of concentration boundary layer is reduced.  

• Larger Casson parameter and magnetic parameter en-

hance the mass diffusion where as the unimolecular 

chemical reaction weakens it. 
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LIST OF SYMBOLS 

a'  Absorption coefficient 

C  Dimensionless concentration 

Cp  Specific heat 

F  Wall parallel Lorentz force 
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Gr  Thermal Grashof number 

Gc  Solutal Grashof number 

g  Gravitational acceleration 

J0  Current density 

K*  Chemical reaction parameter 

l  Width of the magnets and electrodes 

M  Magnetic parameter 

M0  Magnetization of the magnets 

N  Radiation parameter 

P  Modified Hartmann number 

Pr  Prandtl number 

Py  Yield stress of the fluid 

Sc  Schmidt number 

t  Dimensionless time 

T   Dimensionless temperature 

U  Dimensionless vertical velocity component 

V  Dimensionless horizontal velocity component 

X   Dimensionless vertical space coordinate 

Y   Dimensionless transverse coordinate 

 

Greek symbols 

𝛼  Thermal diffusivity 

𝛽  Casson parameter 

𝛽′  Thermal expansion coefficient 

𝛽∗  Volumetric coefficient of expansion with concen-

tration 

𝜅  Thermal conductivity 

𝜇𝑏  Plastic dynamic viscosity 

𝜌  Density 

𝜐  Kinematic viscosity 

𝜎  Electrical conductivity 

𝜎∗  Stefan-Boltzmann constant 

𝜆  Permeability parameter 

𝜆∗  Permeability 
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