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Abstract— In this paper, the non-parametric 

bootstrap and non-parametric Bayesian bootstrap 

methods are applied for parameter estimation in the 

binary logistic regression model. A real data study and 

a simulation study are conducted to compare the Non-

parametric bootstrap, Non-parametric Bayesian 

bootstrap and the maximum likelihood methods. 

Study results shows that three methods are all 

effective ways for parameter estimation in the binary 

logistic regression model. In small sample case, the 

non-parametric Bayesian bootstrap method performs 

relatively better than the non-parametric bootstrap 

and the maximum likelihood method for parameter 

estimation in the binary logistic regression model.  

Keywords— Non-parametric bootstrap; Non-

parametric Bayesian bootstrap; Logistic Regression; 

Confidence Interval; Parameter Estimation. 

I. INTRODUCTION 

Logistic regression is a widely used method in modeling 

categorical dependent variable. Suppose dependent 

variable 𝑦  follows a Bernoulli distribution and 𝑦𝑖  

denotes the ith value of 𝑦, the binary logistic regression 

model can be described as follows: 

𝑦𝑖~𝐵𝑒(𝜋𝑖),   𝑖 = 1,2, … 𝑛 (1) 

𝜋𝑖 =
exp(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)

1 + exp(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)
 

𝑖 = 1,2, … 𝑛 

(2) 

where (1, 𝑥𝑖1, … , 𝑥𝑖𝑝) is the ith row of the 𝑛 × (𝑝 + 1) 

design matrix 𝑋  with 𝑝  independent variables,  𝛽𝑗 ,

𝑗 = 0, … , 𝑝  are unknown parameters. Through logit 

transformation, expression (2) can also be written in 

linear form as 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = ln
𝜋𝑖

1 − 𝜋𝑖

= 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 

𝑖 = 1,2, … 𝑛 

(3) 

For logistic regression model, an important problem 

is how to estimate the unknown parameters 𝛽𝑗. The most 

common method of estimating 𝛽𝑗  is the maximum 

likelihood (ML) method. To combat the multicollinearity 

problem, Schaefer (1984) proposed a ridge estimator in 

logistic regression model and studied its performance 

under the mean squared error criterion. Hossain (2004) 

used Non-parametric Bootstrap Method to estimate 

parameters in multiple logistic regression models. Ariffin 

and Midi (2012) introduced two robust bootstrap 

methods for parameter estimation for logistic regression 

models, namely the diagnostic logistic before bootstrap 

and the weighted logistic bootstrap with probability. 

Rubin (1981) introduced the Bayesian bootstrap method 

according to the bootstrap method proposed by Efron 

(1979). Månsson and Shukur (2011) proposed a new 

ridge estimator in logistic regression model to combat 

multicollinearity. Adjei and Karim (2016) applied the 

parameter bootstrap, the non-parameter bootstrap (NB) 

and the ML methods in logistic regression model for 

parameter estimation and gave a detailed numerical study 

(Salgado et al., 2017).  

Motivated by Adjei and Karim (2016), we will apply 

the non-parametric Bayesian bootstrap (NBB) and Non-

parametric bootstrap methods to estimate coefficient 

parameters in logistic regression model. The rest of the 

paper is organized as follows. In Section II, NB and NBB 

methods in logistic regression model are given in detail. 

In Section III and Section IV, a numerical study and a 

Monte Carlo simulation study is provided respectively. 

Finally, main results are given in Section V (Khoshbin et 

al., 2017). 

II. METHODOLOGY 

Bootstrap re-sampling is a method of supplementing data 

by itself. Parametric bootstrap is used when the 

population distribution is known. On the other hand, 

semi-parametric bootstrap is usually applied when only 

some information on the population distribution is known. 

While non-parametric bootstrap re-sampling is used 

when the population distribution is unknown. 

A. Non-parametric Bootstrap 

The advantages of non-parametric bootstrap re-sampling 

have been clearly showed for data with unknown 

distribution. Efron (1979) states that the bootstrap is able 

to provide trustworthy answers despite of unfavorable 

circumstances. In the simplest setting a random sample is 

available and the non-parametric estimate is the 

empirical distribution function, while a parametric model 

with a parameter of fixed dimension is replaced by its 

maximum likelihood estimate (Davison et al., 2003). 

The algorithm of NB in the logistic regression model 

is given below: 

Step 1: Make a new data set for binary response with 
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covariate(s) (𝑥, 𝑦) from group data. 

Step 2: Draw bootstrap sample by sampling the pairs 

with replacements from new the data set 

(𝑥, 𝑦)𝑏
∗ = ((𝑥1, 𝑦1)∗, … , (𝑥𝑛 , 𝑦𝑛)∗)   for (𝑏 =

1,2, … , 𝐵). 

Step 3: For each𝑏 = 1,2, … , 𝐵 estimate the bootstrap 

sample statistics �̂�1
∗, … , �̂�𝐵

∗   where �̂�𝐵
∗ = 𝑡((𝑥, 𝑦)𝑏

∗ ) =

(�̂�𝑏0
∗ , �̂�𝑏1

∗ ) by refitting model (3). 

Step 4: The distribution of �̂�𝑏
∗  around the original 

estimate 𝛽 is similar to the sampling distribution of the 

𝛽 around the population parameter 𝜃. Here, we assume 

that 𝛽  is normally distribution, which is often 

approximately the case for statistics in sufficiently large 

samples. 

For convenience of following discussion, we denote 

the estimated values of the mean, bias and standard error 

of the non-parametric bootstrap estimator �̂�𝑁𝐵
∗  as 

�̅̂�𝑁𝐵
∗ =

1

𝐵
∑ �̂�𝑏

∗

𝐵

𝑏=1

 (4) 

𝑏𝑖𝑎𝑠(�̂�𝑁𝐵
∗ ) = 𝐸(�̂�𝑁𝐵

∗ ) − 𝛽 = �̅̂�𝑁𝐵
∗ − 𝛽 (5) 

𝑆𝐸(�̂�𝑁𝐵
∗ ) = √

1

𝐵 − 1
∑ (�̂�𝑏

∗ − �̅̂�𝑁𝐵
∗ )

2
𝐵

𝑏=1

  (6) 

Based on the non-parametric bootstrap estimator 

�̂�𝑁𝐵
∗ , we can three types of the confidence interval on the 

model parameters. 

Assuming the distribution of the bootstrapped 

statistic is approximately normal and symmetric, we get 

the normal interval as 

𝐶𝐼 = (𝛽 − 𝑏𝑖𝑎𝑠(�̂�𝑁𝐵
∗ )) ± 𝑧1−𝛼 2⁄ 𝑆𝐸(�̂�𝑁𝐵

∗ ) (7) 

where 𝑧1−𝛼 2⁄   is the 1 − 𝛼 2⁄   quantile of the 

standard normal distribution. 

In this case, the sample estimator is an unbiased 

estimator of the population estimator (Banjanovic et al., 

2016).  

Assuming the distribution of the bootstrapped 

statistic is approximately symmetric and approximately 

normal, then the percentile interval can be given as 

 �̂�𝑁𝐵(𝑙𝑜𝑤𝑒𝑟)
∗ < 𝐶𝐼 < �̂�𝑁𝐵(𝑢𝑝𝑝𝑒𝑟)

∗  (8) 

where 𝑙𝑜𝑤𝑒𝑟 = [(𝐵 + 1)𝛼/2] ,  

𝑢𝑝𝑝𝑒𝑟 = [(𝐵 + 1)(1 − 𝛼 2⁄ )] , and the square brackets 

indicate rounding to the nearest integer.  

If there are no assumptions, we can get the confidence 

interval on the model parameters called as BCa interval 

�̂�𝑁𝐵(𝑙𝑜𝑤𝑒𝑟∗)
∗ < 𝐶𝐼 < �̂�𝑁𝐵(𝑢𝑝𝑝𝑒𝑟∗)

∗  (9) 

where 𝑙𝑜𝑤𝑒𝑟∗ = [𝐵𝑎1], 𝑢𝑝𝑝𝑒𝑟∗ = [𝐵𝑎2] and 

𝑎1 = Φ [𝑧 +
𝑧 − 𝑧1−𝛼 2⁄

1 − �̂�(𝑧 − 𝑧1−𝛼 2⁄ )
] (10) 

𝑎2 = Φ [𝑧 +
𝑧 + 𝑧1−𝛼 2⁄

1 − �̂�(𝑧 + 𝑧1−𝛼 2⁄ )
] (11) 

�̂� =
∑ (�̅� − 𝛽(−𝑖))

3𝑛
𝑖=1

6 [∑ (�̅� − 𝛽(−𝑖))
2𝑛

𝑖=1 ]
3/2 (12) 

𝑧 = Φ−1 [
#𝑏=1

𝐵 (�̂�𝑏
∗ < 𝛽)

𝐵 + 1
] (13) 

Use the same notation as Fox and Weisberg (2012), 

𝛽(−𝑖)  represents the value of 𝛽  produced when the ith 

observation is deleted from the sample, 

�̅� = ∑ 𝛽(−𝑖)/𝑛𝑛
𝑖=1 . 

B. Non-parametric Bayesian Bootstrap 

Rubin (1981) asserts that the Bayesian Bootstrap is a 

natural bayesian analogue of the bootstrap, and shows 

that operationally they are similar. The Bayesian 

Bootstrap Method is to reduce the sample data repetition 

rate on the original sample, and thus to make data 

improvement methods for the samples generated by the 

bootstrap method. In fact, the Bayesian Bootstrap 

Method is a weighted average, the weights are derived 

from the random numbers generated by the Dirichlet 

Distribution. 

The algorithm for NBB in the Logistic Regression 

Model is: 

Step 1: Repeat step1~step3 of NB algorithm to get 

parameter estimate value �̂�𝑁𝐵
∗ = (�̂�1

∗, �̂�2
∗, . . . , �̂�𝐵

∗ ). 

Step 2: Generate random variables 𝑢1, 𝑢2, … , 𝑢𝑛−1 

from (0,1) uniformly distributed, ordering them from 

small to large 𝑢(1), 𝑢(2), … , 𝑢(𝑛−1) , and calculating the 

gaps between two adjacent numbers 𝑔𝑖 = 𝑢(𝑖) − 𝑢(𝑖−1), 

𝑖 = 1,2, … , 𝑛 − 1 , let 𝑢(0) = 0 , 𝑢(𝑛) = 1 . Where 𝑔𝑖 

obeys the Dirichlet distribution and satisfies the formula 

∑ 𝑔𝑖
𝑛
𝑖=1 = 1. 

Step 3: According to the value of Step 1 and Step 2, 

we can get the required one non-parametric Bayesian 

Bootstrap Statistics for �̂�∗ = ∑ 𝑔𝑏
𝐵
𝑏=1 �̂�𝑏

∗. 

Step 4: Repeat step 2-3 B times, for each 𝑏 =
1,2, ⋯ , 𝐵  estimate the non-parametric Bayesian 

Bootstrap Statistics �̂�1
∗, �̂�2

∗, ⋯ , �̂�𝐵
∗  , that is �̂�𝑁𝐵𝐵

∗ =

(�̂�1
∗, �̂�2

∗, ⋯ , �̂�𝐵
∗ ). 

Also, the confidence interval on the model parameters 

based on Non-parametric Bayesian Bootstrap Method is 

suggested as 

𝐶𝐼 = �̄̂�𝑁𝐵𝐵
∗ ± 𝑧1−𝛼/2𝑆𝐸(�̂�𝑁𝐵𝐵

∗ ) (14) 

where  

�̄̂�𝑁𝐵𝐵
∗ =

1

𝐵
∑ �̂�𝑏

∗

𝐵

𝑏=1

 (15) 
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Table 1. Estimated values of parameters based on ML, NB and NBB methods. 

Method 
�̂�0 �̂�1 

exp(�̂�1) 
Value s.e Value s.e 

ML -1.42829 0.22584 0.08454 0.00788 1.08822 

NB -1.42829 0.22144 0.08454 0.00814 1.08822 

NBB -1.43983 0.21905 0.08524 0.00791 1.08898 

𝑆𝐸(�̂�𝑁𝐵𝐵
∗ ) = √

1

𝐵 − 1
∑ (�̂�𝑏

∗ − �̄̂�𝑁𝐵𝐵
∗ )

2
𝐵

𝑏=1

 

 

(16) 

III.A REAL DATA STUDY 

In this section, we will apply the NB, NBB and ML 

methods to the serological data of Hepatitis A from 

Bulgaria once used by Adjei and Karim (2016). The data 

includes an independent variable, that is, the information 

about the age group of one year on the subject, and the 

response variable is a set of binary variables of serum 

properties. The number of seropositive is the number of 

infected by hepatitis A, the covariate is age and 𝜋𝑖 =
𝜋(age)  is the proportion of seropositive. According to 

section 1, the binary logistic regression model can be 

written as 

𝑙𝑜𝑔𝑖𝑡[𝜋𝑖] = 𝛽0 + 𝛽1𝑎𝑔𝑒𝑖 , 𝑖 = 1,2, ⋯ , 𝑛 (17)
 

where 𝛽1  is the effect of 𝑎𝑔𝑒 on the log odds of 

infection, 𝑛 = 83. 

In this section and next section, the significance 

level 𝛼is set to 0.05 and all computations are 

accomplished by R3.5.1.  

A. Estimated values of parameters 

From Table 1, we can see that the estimated values of 

parameters based on ML, NB and NBB methods are very 

close. The standard error of the estimator derived from 

the NBB method is relatively smaller than two other 

estimators. This means the NBB method performs 

relatively well under the standard error criterion.  

It is known that the odds ratio equals exp(�̂�1)  in 

the binary logistic regression model. It can be seen that 

the odds ratio of the NBB method is the largest, 

indicating that the number of infected hepatitis A is 

1.08898 times compared to the uninfected population as 

the age increases each year. The odds ratio of the ML and 

NB methods are almost identical and both are slightly 

smaller than the odds ratio of the NBB methods. This 

implies the NBB method is slightly well than the ML and 

NB methods in odds ratio mean. 

To compare the reliability of the ML, NB and NBB 

methods, we choose the 95% confidence interval (CI) 

based on ML as a reference interval and calculate the 

frequencies of the estimated values of NB and NBB 

methods in the given interval. 

As shown in Table 3, the proportion of the NBB 

method in the confidence interval of MLE is slightly 

bigger than the proportion of the MLE and NB methods, 

and the MLE and NB are approximately equal, indicating 

that the NBB method has the slightly higher reliability 

among the three methods. 

 

 

 

Table 2. Proportion of the estimated values in the 95% confidence interval based on ML. 

Method 
�̂�0 �̂�1 

95%CI based on ML Proportion 95% CI based on ML Proportion 

NB (-1.8830, -0.9958) 95.58% (0.0699,0.1009) 94.36% 

NBB (-1.8830, -0.9958) 95.56% (0.0699,0.1009) 95.02% 

ML (-1.8830, -0.9958) 95.00% (0.0699,0.1009) 95.00% 

 

Table 3. Confidence intervals and confidence interval length by ML, NB and NBB. 

Method 
�̂�0 �̂�1 

95%CI CI length 95%CI CI length 

MLE (-1.8830, -0.9958) 0.887 (0.0699,0.1009) 0.0310 

NB 

Normal (-1.8450, -0.9770) 0.868 (0.0676,0.0995) 0.0319 

Percentile (-1.9050, -1.0350) 0.870 (0.0709,0.1030) 0.0321 

BCa (-1.8610, -1.0040) 0.857 (0.0688,0.1003) 0.0315 

NBB (-1.8828, -1.0288) 0.854 (0.0702,0.1013) 0.0311 
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B. Confidence intervals of parameters 

Next, we give the confidence intervals derived from the 

MLE, NB (normal, percentile, BCa) and NBB in Table 3. 

The accuracy of the three methods is judged by the length 

of the confidence interval, From Table 3, we can see that 

length of the confidence interval of NBB is almost the 

same as the length of the confidence interval of MLE and 

NB. For the NB method, normal and percentile are 

reasonably similar to each other, and with respect to 

normal and percentile, the length of the confidence 

interval of the BCa method is the shortest, so the results 

of the BCa method appear to be more precise. 

IV. MONTE CARLO SIMULATION 

To further compare the performance of the ML, NB and 

NBB methods, we are to perform a Monte Carlo 

simulation study. 

A. The design of the experiment 

The dependent variable of the logistic regression is 

generated using pseudo-random numbers from the 

𝐵𝑒(𝜋𝑖)  distribution and one explanatory variable are 

generated as𝑥𝑖 ∼ 𝑁(40,24), 𝑖 = 1, ⋯ , 𝑛. 𝜋𝑖is calculated 

as follows: 

𝜋𝑖 =
𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
 (18) 

To compare the results with Section 3,𝛽0 and 𝛽1  is 

set to -1.43 and 0.08 respectively which are derive from 

the real data. 

Four different sample sizes for  , such as 60, 80, 100, 

and 150 are considered. The number of re-sampling times 

of NB and NBB is 5000 times. All simulation results are 

summarized in Tables 4-6. 

B. Estimated values of parameters 

It can be seen from Table 4 that the estimated values 

based on ML, NB and NBB are very close in all cases. 

When 𝑛 = 80, the estimated values are the closest to the 

true value. This is reasonable for the true values of 𝛽0and 

𝛽1 are derived from the real data with sample size 83. 

On the whole, there is no significant difference on the 

standard error of the ML, NB, and NBB three methods. 

In detail, it can be seen from Table 4 that bold digit is the 

smallest in each row. When the sample size is not big, the 

standard error of the NBB method is the smallest, the NB 

method is the second smallest, and the ML method is the 

biggest. This means that the NBB method performs 

slightly well than the NB method and the ML method 

when the sample size is not big. 

In the same way used in Section 3, we choose the 95% 

confidence interval (CI) based on ML as a reference 

interval and calculate the frequencies of the estimated 

values of NB and NBB methods in the given interval to 

compare the reliability of the ML, NB and NBB methods. 

It can be seen from Table 5 that when 𝑛 = 60,80, the 

estimated values of the NBB method in the given 

confidence interval bigger than that of the NB method 

and the ML method. From the above analysis, it can be 

concluded that when the sample size is small, the NBB 

method is the most reliable among the three methods. 

C. Confidence intervals of parameters 

Finally, we discuss the accuracy of the ML, NB and NBB 

methods in the confidence interval length mean. From 

Table 6, we can draw conclusions that in the confidence 

interval estimation of the logistic regression model, when 

the sample size is small, the NBB method has a more 

accurate confidence interval, followed by the NB method, 

and finally the MLE method. When the sample size is 

large, the accuracy of the three methods tends to be 

similar.  

 

Table 4. Estimated values of parameters based on ML, NB and NBB methods. 

 Value s.e 

 ML NB NBB ML NB NBB 

 �̂�0 -0.95355 -0.95355 -1.02052 0.67857 0.62564 0.58936 

n=60 �̂�1 0.05568 0.05568 0.05923 0.01991 0.01766 0.01603 

 exp(�̂�1) 1.05726 1.05726 1.06102 1.02011 1.01782 1.01616 

 �̂�0 -1.29650 -1.29650 -1.37875 0.56235 0.55571 0.51739 

n=80 �̂�1 0.08233 0.08233 0.08660 0.02039 0.01867 0.01709 

 exp(�̂�1) 1.08581 1.08581 1.09046 1.02060 1.01885 1.01724 

 �̂�0 -0.92258 -0.92258 -0.97127 0.46296 0.48759 0.46263 

n=100 �̂�1 0.06647 0.06647 0.06895 0.01495 0.01483 0.01380 

 exp(�̂�1) 1.06873 1.06873 1.07138 1.01506 1.01494 1.01390 

 �̂�0 -1.45467 -1.45467 -1.5231 0.45318 0.43892 0.42951 

n=150 �̂�1 0.08106 0.08106 0.08448 0.01410 0.01589 0.01538 

 exp(�̂�1) 1.08444 1.08444 1.08820 1.01420 1.01602 1.01550 

 

  



R. LI, J. ZHOU, L. WANG 

203 

Table 5. Proportion of the estimated values in the 95% confidence interval based on ML. 

Method 
�̂�0 

 
�̂�1 

95%CI based on ML Proportion 95%CI based on ML Proportion 

 NB (-2.4096,0.2877) 96.70%  (0.0217,0.1009) 97.18% 

n=60 NBB (-2.4096,0.2877) 97.20%  (0.0217,0.1009) 98.38% 

 MLE (-2.4096,0.2877) 95.00%  (0.0217,0.1009) 95.00% 

 NB (-2.4995, -0.2634) 95.68%  (0.0469,0.1279) 96.84% 

n=80 NBB (-2.4995, -0.2634) 96.60%  (0.0469,0.1279) 98.02% 

 MLE (-2.4995, -0.2634) 95.00%  (0.0469,0.1279) 95.00% 

 NB (-1.8815, -0.0467) 94.48%  (0.0396,0.0988) 95.74% 

n=100 NBB (-1.8815, -0.0467) 94.82%  (0.0396,0.0988) 96.22% 

 MLE (-1.8815, -0.0467) 95.00%  (0.0396,0.0988) 95.00% 

 NB (-2.4067, -0.6155) 95.58%  (0.0557,0.1114) 92.88% 

n=150 NBB (-2.4067, -0.6155) 95.90%  (0.0557,0.1114) 93.40% 

 MLE (-2.4067, -0.6155) 95.00%  (0.0557,0.1114) 95.00% 

 

Table 6. Confidence intervals and confidence interval length by ML, NB and NBB. 

 
ML 

NB NBB 

 Normal Percentile BCa  

n=60 
0̂  (-2.4096,0.2877) 

2.6973 

(-2.0986,0.3540) 

2.4526 

(-2.378,0.0639) 

2.4419 

(-2.226,0.1812) 

2.4072 

(-2.2682,0.0534) 

2.3216 

1̂  (0.0217,0.1009) 

0.0792 

(0.0175,0.0868) 

0.0693 

(0.0319,0.1002) 

0.0683 

(0.0284,0.0931) 

0.0647 

(0.0322,0.0943) 

0.0621 

n=80 
0̂  

(-2.4995,-0.2634) 

2.236 

(-2.289,-0.111) 

2.178 

(-2.586,-0.413) 

2.173 

(-2.373,-0.266) 

2.107 

(-2.4583,-0.4029) 

2.0554 

1̂  
(0.0469,0.1279) 

0.0810 

(0.0411,0.1143) 

0.0732 

(0.0557,0.1292) 

0.0735 

(0.0501,0.1172) 

0.0671 

(0.0560,0.1236) 

0.0676 

n=100 
0̂  

(-1.8815,-0.0467) 

1.8348 

(-1.821,0.0902) 

1.9112 

(-1.9996,-0.107) 

1.8926 

(-1.8628,0.033) 

1.8958 

(-1.897,-0.0885) 

1.8085 

1̂  
(0.0396,0.0988) 

0.0592 

( 0.0346,0.0928) 

0.0582 

(0.0438,0.1018) 

0.058 

(0.0400,0.0950) 

0.055 

(0.0445,0.0985) 

0.054 

n=150 
0̂  (-2.4067,-0.6155) 

1.7912 

(-2.256, -0.535) 

1.721 

(-2.464, -0.724) 

1.74 

(-2.346, -0.644) 

1.702 

(-2.4027,-0.7018) 

1.7009 

1̂  (0.0557,0.1114) 

0.0557 

(0.0470,0.1092) 

0.0622 

(0.0585,0.1199) 

0.0614 

(0.0551,0.1136) 

0.0585 

(0.0570,0.1172) 

0.0602 

 

Specifically, it is easy to know that when 𝑛 = 60,80, the 

confidence interval length of the NBB method is the 

shortest, the second shortest is NB method, and the MLE 

method has the longest confidence interval; when 𝑛 =
100, the confidence interval length of the NBB method 

is the shortest, and confidence interval length of the MLE 

method is almost the same as the NB method; when 𝑛 =
150 ,the confidence interval of the three methods is 

almost the same length. Among them, in the NB method, 

the confidence interval length of the BCa method is better 

than the normal and percentile methods, and the 

confidence interval lengths of the normal and percentile 

methods are reasonably similar. 

 

V. CONCLUSIONS 

In this paper, the NB and NBB methods are applied to 

estimate the coefficient parameters in the binary logistic 

regression model. A numerical example and simulation 

study shows that three methods are effective ways for 

parameter estimation. 

For the estimator based on the NBB method is 

relatively superior to that of the ML and NB in the 

standard error sense and the reliability sense. Also, in 

practical meaning the odds ration derived from the NBB 

method performs relatively well in small sample case.  

Also, the confidence interval derived from the NBB 

method is relatively better than the ML method and NB 

method in accuracy sense for small sample. 
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