

EVALUATION OF ANTIFUNGAL AND ANTIBACTERIAL ACTIVITY OF SOME NEW BENZIMIDAZOLE DERIVATIVES

K. ZOMORODIAN[†], S. KHABNADIDEH[‡], L. ZAMANI[‡], K. PAKSHIR[†] and M. TAJADDOD[‡]

[†] Department of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, I.R. Iran. zomorodian@sums.ac.ir, pakshirk@sums.ac.ir

[‡] Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, I. R. Iran. khabns@sums.ac.ir, l.zamani2008@gmail.com, tajaddodm@yahoo.com

Corresponding Author: l.zamani2008@gmail.com

Abstract— The extensive use of antifungal drugs and their resistance against fungal infections have led to discover new antimicrobial compounds. We previously described synthesis of some new derivatives of 2-methylbenzimidazole (1a-5a) and 5,6-dimethylbenzimidazol (1b-5b). Here we evaluated the antimicrobial activities of these compounds against different species of micro organisms including gram positive and gram negative bacteria as well as fungi. Broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI) was used for this purpose. The results show compounds 2-Methyl-1-(3-methylbenzyl)-1H-benzo[d]imidazole (5a) and 5,6-Dimethyl-1-(3-methyl benzyl)-1H-benzo[d]imidazole (5b) had the best antifungal activity against the examined fungi and gram positive bacteria. Moreover these two compounds inhibited the growth of azole resistant strains. By comparison the relationship between the structures and activities of the tested compounds revealed that the presence of methyl residue in meta position of benzyl group enhance the antifungal activity. Regarding a broad spectrum antifungal activities of some of the tested compounds, they might be a good candidate for further in vivo studies to evaluate their pharmacological activity and toxicity as a novel antifungal agents.

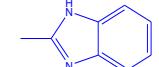
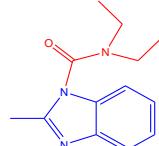
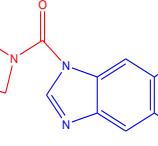
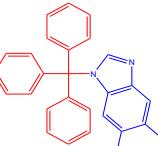
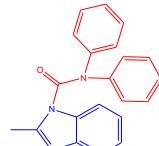
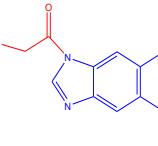
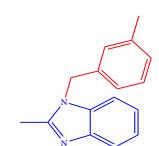
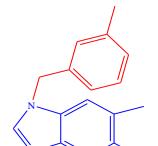
Keywords— Benzimidazole; Antifungal Agents; Anti-Bacterial Agents.

I. INTRODUCTION

During the past two decades, resistance to established antimicrobial drugs has increased dramatically (Adibpour *et al.*, 2014; Badiie and Alborzi, 2011a, Badiie and Alborzi, 2011b). These resistant strains cause failure in the treatment and enhance the mortality risks, and sometimes contribute to complications. Unlike antibacterial agents, the variety of antifungal drugs is restricted due to the similarity of structure and metabolism of eukaryotic fungal cells to those of mammalian cells. On the other hand, the limited diversity of antifungal agents and recent resistance of fungi to the known antifungal drugs created substantial medical need for new classes of antifungal agents.

Developments of resistance to currently available antifungal azoles in *Candida* spp., as well as clinical

failures in the treatment of fungal infections have been reported (Rezaei *et al.*, 2009). However, the emergence of azole resistant strains has spurred the search for new antimycotic compounds (Zampieri *et al.*, 2007). Therefore, design and synthesis of novel antimicrobials will always remain an area of immense significance (Badiie and Alborzi, 2011a).









Among the important pharmacophores responsible for antimicrobial activity, the azole scaffold is still considered as a practicable lead structure for synthesis of proficient and broad spectrum antimicrobial agents. Novel azole compounds are presented for the treatment of superficial and systemic antimicrobial agents. Of the azole compounds benzimidazoles and their derivatives demonstrate a large range of biological properties depending on the substituent pattern in the benzimidazole rings. These compounds are considered as a promising class of bioactive heterocyclic compounds surrounding a diverse range of biological activities such as antihypertensive, anticoagulant, anti-inflammatory, anti-HIV, anti-tumor and antimicrobial (Badiie and Alborzi, 2011b; Badiie *et al.*, 2011; Khabnadideh *et al.*, 2012; Pakshir *et al.*, 2011; Zomorodian *et al.*, 2011a).

We previously reported the synthesis of different azole compounds including: metronidazole (Khabnadideh *et al.*, 2007; Shahriari *et al.*, 2015), imidazole (Khabnadideh *et al.*, 2009; Khabnadideh *et al.*, 2003; Rezaei *et al.*, 2011), triazole (Rezaei *et al.*, 2009; Rezaei *et al.*, 2011), benztriazole (Rezaei *et al.*, 2009), and benzimidazole (Zamani *et al.*, 2014), derivatives (Khabnadideh *et al.*, 2014) as antifungal and antibacterial agents. Of these mentioned compounds, benzimidazole derivatives established better antifungal activities (Zamani *et al.*, 2014).

Recently we synthesized some novel derivatives of 2-methyl and 5,6-dimethyl benzimidazole in organic and ionic solvents and compared the rate of reactions in these two media (Khabnadideh and Harper, 2014). In this study, we decided to investigate their antifungal and antibacterial activities against different species of micro organisms.

II. MATERIALS AND METHODS

New synthesized compounds were prepared in the school of chemistry, University of New South Wales, Sydney, Australia (Table 1) (Khabnadideh and Harper,

Compounds	Chemical name	Chemical structure	Compounds	Chemical name	Chemical structure
1a	2-Methyl-1 <i>H</i> -benzimidazole		1b	5,6-Dimethyl-1 <i>H</i> -benzimidazole	
2a	<i>N,N</i> -Diethyl-2-Methyl-1 <i>H</i> -benzimidazole-1-carboxamide		2b	<i>N,N</i> -Diethyl-5,6-Dimethyl-1 <i>H</i> -benzimidazole-1-carboxamide	
3a	2-Methyl-1-trityl-1 <i>H</i> -benzimidazole		3b	5,6-Dimethyl-1-trityl-1 <i>H</i> -benzimidazole	
4a	2-Methyl- <i>N,N</i> -diphenyl-1 <i>H</i> -benzimidazole-1-carboxamide		4b	2-Chloro-1-(5,6-dimethyl-1 <i>H</i> -benzimidazol-1-yl)-ethanone	
5a	2-Methyl-1-(3-methyl-benzyl)-1 <i>H</i> -benzimidazole		5b	5,6-Dimethyl-1-(3-methyl-benzyl)-1 <i>H</i> -benzimidazole	

Table 1. Synthesized benzimidazole derivatives, which were tested against fungi and bacteria.

2014). The RPMI-1640 media were used from Sigma, St. Louis, USA. All chemicals and solvents were purchased from Merck. Serial dilutions (0.5–256 μ L/mL) were prepared in the Muller-Hinton media (Merck, Darmstadt, Germany) and Sabouraud dextrose agar was produced from Merck, Darmstadt, Germany.

A. Biological activity

A.1. Microorganisms

Antifungal activities of the synthetic compounds against some standard strains of fungi, including *Candida albicans* (ATCC 10261, ATCC 5982, ATCC 2730, ATCC 562, CBS 1912), *C. tropicalis* (ATCC 750), *C. glabarata* (ATCC 2192, ATCC 863, ATCC 6146, ATCC 90030), *C. krusei* (ATCC 6258), *C. dubliniensis* (ATCC8501, ATCC 7987, CBS 8500, ATCC 7988), *C. parapsilosis* (ATCC 4344), *Cryptococcus neoformans* (ATCC 9011), *Exophiala dermatitidis* (CBS 120433), *Pseudallescheria boydii* (CBS 329.93), *Aspergillus fumigatus* (ATCC 14110), *A. flavous* (ATCC 6402) and *A. clavatus* (CBS514.65) as well as three clinical isolates of each azole resistant and azole sensitive yeasts were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, antimicrobial properties of the synthesized compounds against 40 clinical isolates of yeasts by PCR-RFLP were also tested (Khabnadideh *et al.*, 2007; Zomorodian *et al.*, 2011b). The antibacterial activities of the synthetic compounds against standard species of *Staphylococcus aureus* (ATCC 2592, ATCC 700698), *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853), Vancomycin Resistant *Enter-*

coccus fecalis (ATCC 51299), and clinical isolates of *S. aureus*, *E. faecalis*, *E. coli*, and *P. aeruginosa* collected from the Dr. Faghihi Hospital (Shiraz, Iran) were also evaluated in this work. Microdilution and disk diffusion methods were used to determine the susceptibility of all clinical isolates of bacteria and fungi against select compounds (Wayne, 2006a; Wayne, 2006b; Adibpour *et al.*, 2014).

Gram positive bacteria with a tick peptidoglycan layer give a positive result in the Gram stain test. They take up the crystal violet stain. But the peptidoglycan layer of Gram negative bacteria is much thinner and they cannot retain the violet stain after the decolorization.

A.2. Determination of Minimum Inhibitory Concentrations

MICs were determined by using the broth microdilution method recommended by the CLSI (Clinical & Laboratory Standards Institute) with some modifications. In order to determination of antimicrobial activities against fungi, serial dilutions of the synthetic compounds (1–1024 μ g/mL) were prepared in 96-well microtiter plates using RPMI-1640 media (Sigma, St. Louis, MO, USA) buffered with MOPS (Sigma). Stock inoculums were prepared by suspending three colonies of the examined yeast in 5 mL sterile 0.85% NaCl, and adjusting the turbidity of the inoculums to 0.5 McFarland standards at 530 nm wavelengths (this yields stock suspension of 1–5 \times 10⁶ cells/mL). For moulds (*Aspergillus* spp. and dermatophytes), conidia were recovered from the 7-day old cultures grown on potato dextrose agar by a wetting

loop with tween-20. The collected conidia were transferred in sterile saline and their turbidity was adjusted to OD=0.09-0.11 that yields $0.4-5 \times 10^6$ conidia/mL. Working suspension was prepared by making a 1/50 and 1/1000 dilution with RPMI of the stock suspension for moulds and yeasts, respectively. Working inoculums (0.1 mL) were added to the microtiter plates, which were incubated in a humid environment at 30°C for 24–48 h. Uninoculated medium (200 μ L) was included as a sterility control. In addition, growth controls (medium with inoculums but without antibiotics or the synthetic compounds) were also included.

The growth in each well was compared with that of the growth in the control well. MICs were visually determined and defined as the lowest concentration of the compounds produced $\geq 95\%$ growth reduction compared with the growth in the control well. Each experiment was performed in triplicate.

In addition, media from the wells with fungi showing no visible growth were further cultured on Sabouraud dextrose agar (Merck, Darmstadt, Germany) to determine the minimum fungicidal concentration (MFC). MFCs were determined as the lowest concentration yielding no more than 4 colonies, which resulted in mortality of 98% of the microbes in the initial inoculums.

III. RESULTS AND DISCUSSION

In this study, all compounds in two categories (2-methylbenzimidazole (1a-5a) and 5,6-dimethylbenzimidazol (1b-5b) were estimated against various species of fungi.

Antifungal activities of the tested compounds are presented in Table 2. For antifungal activities, compounds 2-Methyl-1-(3-methylbenzyl)-1H-benzo[d]imidazole (5a) and 5,6-Dimethyl-1-(3-methylbenzyl)-1H-benzo[d]imidazole (5b) exhibited the best antifungal activities against all standard and clinical strains including fluconazole resistant strains.

Of the tested benzimidazole derivatives, compounds 2-methyl- 1- (3-methylbenzyl)- 1H-benzo [d]imidazole (5a) and 5,6-Dimethyl-1-(3-methyl-benzyl)-1H-benzo-imidazole (5b) and showed inhibitory effect on gram positive bacteria at concentrations ranging from 8 to 256 μ g/mL (Table 3). Comparison of MIC values for 2-methylbenzimidazole derivatives (1a-5a) with 5, 6-dimethylbenzimidazol derivatives (1b-5b) demonstrated that, series b were more active against microorganisms than series a. With evaluated MIC values of two basic compounds, 2-methylbenzimidazole (1a) and 5, 6-dimethylbenzimidazol (1b), compound (1b) was more active compound against microorganisms than compound (1a). Additionally, compounds 2-Chloro-1-(5, 6-dimethyl-1H-benzo[d]imidazol-1-yl)ethanone (4b) and *N,N*-Diethyl-5,6-dimethyl-1H-benzo[d]imidazole-1-carboxamide (2b) exhibited both inhibitory and fungicidal activities against the examined fungi at concentrations ranging from 16 to ≤ 512 μ g/mL.

Compound (5a) inhibited the growth of all examined *Candida* species (*C. glabrata* and *C.dubliniensis*) at

concentrations ranging from 0.5 to 32 μ g/mL (Geometric mean MICs = 4.7 μ g/mL). Replacement of hydrogen at *N*-position of benzimidazole ring with diethylcarboxamide residue (2a and 2b), with trityl group (3a and 3b) or with diphenylcarboxamide residue (4a) reduced their antifungal activity in compared to the base compounds especially (1a). *o*-Chloro-ethanone substitute of benzimidazole ring provided compound (4b) which exhibited better activity against the studied fungi than the base compound (1b). But in the compound (4a) with diphenylcarboxamide residue at *N*-position of benzimidazole ring, reduced its antifungal activity compared to base compound (1a).

The best inhibitory effect of the compounds (5b) and (5a) on positive gram of bacteria, might be due to the replacement of 3-methyl-benzyl group in the benzimidazole ring in comparison the other compounds, although compound (5b) more effective than compound (5a). Also, compounds (5a) and (5b), had significant enhancement of the inhibitory activity and they were effective against two azole-resistant strains of *C. albicans*.

Of the tested compounds 2-methyl-1-(3-methyl-benzyl)-1H-benzo[d]imidazole (5a) and 5,6-Dimethyl-1-(3-methyl-benzyl)-1H-benzoimidazole (5b) showed inhibitory effects on the gram positive microorganisms (concentrations ranging from 8 to 256 μ g/mL) respectively. These two compounds also had the most antifungal activates even against fluconazole resistant strains including *C. parapsilosis*, *C. kruzei*, *C. tropicalis* and *E. dermatitidis*.

IV. CONCLUSIONS

2-Chloro-ethanone substitute of benzimidazole ring provided compound (4b) which exhibited a better activity against the studied fungi than (1b). But compound (4a) with diphenylcarboxamide residue on the benzimidazole ring, showed less antifungal activity compared to (1a), perhaps this is due to low solubility in aqueous media.

The best inhibitory effect of the compounds (5a) and (5b) on gram positive bacteria, might be due to the replacement of 3-methyl-benzyl group in the benzimidazole ring in comparison the other substitutions. According to the mechanism of azole compounds which act by inhibition of 14- α -demethylase enzyme we suggest the same mechanism for our benzimidazole derivatives as well. But further studies are needed to establish the exact way for their activity.

ACKNOWLEDGEMENTS

Financial assistance from the Shiraz University of Medical Sciences is gratefully acknowledged.

REFERENCES

- Adibpour, N., F. Nasr, F. Nematpour, A. Shakouri and A. Ameri, "Antibacterial and Antifungal Activity of *Holothuria leucospilota* Isolated From Persian Gulf and Oman Sea," *Jundishapur J. Microbiol.*, **47**, 1-4 (2014).
- Badiee, P. and A. Alborzi, "Invasive fungal infections in renal transplant recipients," *Exp. Clin.*

Table 2. MIC and MFC ($\mu\text{g/mL}$) of the 2-methylbenzimidazole and 5,6-dimethylbenzimidazole derivatives against fungi

		Compound		1a		2a		3a		4a		5a		
		Fungi(names of strains)		MIC50	MFC	MIC 50	MFC	MIC50	MFC	MIC50	MFC	MIC50	MFC	
Yeast	<i>C.albicans</i>	32	>256	>256	>256	>256	>256	>256	>256	>256	8	128		
	<i>Aazole-sensitive C.albicans</i>	128	>256	>256	>256	>256	>256	>256	>256	>256	4	256		
	<i>Aazole-resistant C.albicans</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	4	128		
	<i>C.dubliniensis</i>	64	>256	>256	>256	>256	>256	>256	>256	>256	1	32		
	<i>C.glabrata</i>	16	>256	>256	>256	>256	>256	>256	>256	>256	0.5	16		
	<i>C.kruzei</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	8	64		
	<i>C.parapsilosis</i>	128	>256	>256	>256	>256	>256	>256	>256	>256	8	128		
	<i>Aazole-sensitive C.parapsilosis</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	64	128		
	<i>C.tropicalis</i>	128	>256	>256	>256	>256	>256	>256	>256	>256	16	256		
	<i>Aazole-resistant C.tropicalis</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	64	>256		
Filamentous	<i>C. neoformans</i>	128	>256	>256	>256	>256	>256	>256	>256	>256	16	128		
	<i>E. dermatitidis</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	16	256		
	<i>A. famigatus</i>	256	>256	>256	>256	>256	>256	>256	>256	>256	64	>256		
	<i>A. clavatus</i>	256	>256	>256	>256	>256	>256	>256	>256	>256	32	256		
	<i>P. boydii</i>	128	>256	>256	>256	>256	>256	>256	>256	>256	64	>256		
	<i>A. flavus</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	64	256		
			Compound		1b		2b		3b		4b		5b	
	Fungi(names of strains)		MIC50	MFC	MIC 50	MFC	MIC50	MFC	MIC50	MFC	MIC50	MFC	MIC50	MFC
	<i>C.albicans</i>	64	>256	64	>256	>256	>256	64	>256	4	32			
	<i>Aazole-sensitive C.albicans</i>	64	>256	64	>256	>256	>256	64	>256	2	256			
	<i>Aazole-resistant C.albicans</i>	64	>256	128	>256	>256	>256	64	128	4	128			
	<i>C.dubliniensis</i>	64	>256	64	>256	>256	>256	64	>256	4	32			
	<i>C.glabrata</i>	16	>256	64	>256	>256	>256	16	>256	1	>256			
	<i>C.kruzei</i>	128	256	128	>256	>256	>256	64	256	4	32			
	<i>C.parapsilosis</i>	32	256	256	>256	>256	>256	32	256	2	>256			
	<i>Aazole-sensitive C.parapsilosis</i>	128	>256	>256	>256	>256	>256	256	>256	64	>256			
	<i>C.tropicalis</i>	32	>256	256	>256	>256	>256	32	256	8	>256			
	<i>Aazole-resistant C.tropicalis</i>	128	>256	256	>256	>256	>256	64	>256	32	>256			
	<i>C. neoformans</i>	128	>256	64	>256	>256	>256	128	>256	16	128			
	<i>E. dermatitidis</i>	64	>256	128	>256	>256	>256	64	>256	8	>256			
	<i>A. famigatus</i>	128	>256	128	>256	>256	>256	128	>256	32	>256			
	<i>A. clavatus</i>	128	>256	128	>256	>256	>256	128	>256	16	>256			
	<i>P. boydii</i>	128	>256	128	>256	>256	>256	128	>256	32	>256			
	<i>A. flavus</i>	128	>256	256	>256	>256	>256	128	>256	32	256			

MIC: Minimum inhibitory concentration, MFC: Minimum fungicidal concentration

Table 3. MIC and MBC ($\mu\text{g/mL}$) of the 2-methylbenzimidazole and 5, 6-dimethylbenzimidazole derivatives against bacteria

		Compound		MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
		Bacteria (names of strains)		MIC50	MFC	MIC 50	MFC	MIC50	MFC	MIC50	MFC	MIC50	MFC
Gram positive	<i>S. aureus</i>	32	>256	>256	>256	>256	>256	>256	>256	8	128		
	<i>Methicillin-sensitive S.aureus (3)</i>	128	>256	>256	>256	>256	>256	>256	>256	4	256		
	<i>Methicillin-resistant S.aureus (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	4	128		
	<i>E. faecalis</i>	64	>256	>256	>256	>256	>256	>256	>256	1	32		
	<i>E.coli</i>	16	>256	>256	>256	>256	>256	>256	>256	0.5	16		
	<i>Third-generation cephalosporin-sensitive E.coli (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	8	64		
	<i>Third-generation Cephalosporine- resistant E.coli (3)</i>	128	>256	>256	>256	>256	>256	>256	>256	8	128		
	<i>P.aeruginosa</i>	>256	>256	>256	>256	>256	>256	>256	>256	64	128		
	<i>Sensitive strain P.aeruginosa</i>	128	>256	>256	>256	>256	>256	>256	>256	16	256		
	<i>Multidrug-resistant P.aeruginosa</i>	>256	>256	>256	>256	>256	>256	>256	>256	64	>256		
Gram negative	Compound		1b		2b		3b		4b		5b		
	Bacteria (names of strains)		MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	
	<i>S. aureus</i>	>256	>256	>256	>256	>256	>256	>256	>256	32	>256		
	<i>Methicillin-sensitive S.aureus (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	8	256		
	<i>Methicillin-resistant S.aureus (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	64	256		
	<i>E. faecalis</i>	>256	>256	>256	>256	>256	>256	>256	>256	64	256		
	<i>E.coli</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		
	<i>Third-generation cephalosporin-sensitive E.coli (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		
	<i>Third-generation Cephalosporine- resistant E.coli (3)</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		
	<i>P.aeruginosa</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		
Gram negative	<i>Sensitive strain P.aeruginosa</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		
	<i>Multidrug-resistant P.aeruginosa</i>	>256	>256	>256	>256	>256	>256	>256	>256	>256	>256		

MIC: Minimum inhibitory concentration, MBC: Minimum bacetricidal concentration

Transplant., **9**, 355-362 (2011a).
 Badiie, P. and A. Alborzi, "Susceptibility of clinical Candida species isolates to antifungal agents by E-test, Southern Iran: A five year study," *J. Microbiol.*, **3**, 183-188 (2011b).

Badiie, P., A. Alborzi, E. Shakiba, S. Farshad and A. Japoni, "Susceptibility of Candida species isolated from immunocompromised patients to antifungal agents," *East. Mediterr. Health J.*, **17**, 425-430 (2011).

Khabnadideh, S. and J. B. Harper, "Effect of an Ionic liquid [Bmim][Tf₂N] on the rate of reaction in the synthesis of some azole compounds as antifungal agents," *Sci. Res.*, **2**, 125-131 (2014).

Khabnadideh, S., Z. Rezaei, Y. Ghasemi and N. Montazeri-Najafabady, "Anti bacterial activity of some new azole compounds," *Anti-Infective Agent.*, **10**, 26-33 (2012).

Khabnadideh, S., Z. Rezaei, A. Khalafi-Nezhad, R. Bahrinajafi, R. Mohamadi and A. Farrokhoz, "Synthesis of N-Alkylated derivatives of imidazole as antibacterial agents," *Bioorg. Med. Chem. Lett.*, **13**, 2863-2865 (2003).

Khabnadideh, S., Z. Rezaei and A. Khalafi-Nezhad, Pakshir K, Heirran MJ, Shobeiri H. "Design and synthesis of 2-Methyl and 2-Methyl-4-Nitro imidazole derivatives as antifungal agents," *Iran. J. Pharm. Sci.*, **5**, 37-44 (2009).

Khabnadideh, S., Z. Rezaei, M. Motazedian and M. Eskandari, "Synthesis of metronidazole derivatives as antigiardiasis agents," *DARU. J. Pharm. Sci.*, **15**, 17-20 (2007).

Lebouvier, N., F. Pagniez, M. Duflos, P. Le Pape, Y. M. Na, G. Le Baut and M. Le Borgne, "Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety," *Bioorg. Med. Chem. Lett.*, **17**, 3686-3689 (2007).

Pakshir, K., L. Bahaedinie, Z. Rezaei, M. Sodaifi and K. Zomorodian, "In vitro activity of six antifungal drugs against clinically important dermatophytes," *Jundishapur J. Microbiol.*, **2**, 158-163 (2011).

Rezaei, Z., S. Khabnadideh, K. Pakshir, Z. Hossaini, F. Amiri and E. Assadpour, "Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives," *Euro. J. Med. Chem.*, **44**, 3064-3067 (2009).

Rezaei, Z., S. Khabnadideh, K. Zomorodian, K. Pakshir, G. Kashi, N. Sanagoei and S. Gholami, "Design, synthesis and antifungal activity of some new imidazole and triazole derivatives," *Arch. Pharm-Chem. Life Sci.*, **34**, 658-665 (2011).

Shahriari, B., Z. Rezaei, S. Khabnadideh, H. Sadeghpour, G. R. Hatam, Q. Asgari, A. Kiani, and F. Firoozi, "Synthesis and biological evaluation of metronidazole derivatives as anti-giardia agents," *Trends. pharm. sci.*, **1**, 105-110 (2015).

Wayne, P.A., "Inventor Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts," (2006a).

Wayne, P.A., "Inventor Reference method for broth dilution antifungal susceptibility testing of filamentous fungi," (2006b).

Zamani, L., B. F. Mirjalili, K. Zomorodian, M. Namazian, S. Khabnadideh and E. F. Mirzaei, "Synthesis of benzimidazoles in the presence of nano-TiCl₄.SiO₂ as antifungal agents and tautomerism theoretical study of some products," *Farmacia*, **62**, 467-482 (2014).

Zampieri, D., M. G. Mamolo, L. Vio, E. Banfi, G. Scialino, M. Fermeglia, M. Ferronec and S. Sabrina Pricl, "Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method," *Bioorg. Med. Chem.*, **15**, 7444-7458 (2007).

Zomorodian, K., N. N. Haghig, N. Rajaee, K. Pakshir, B. Tarazooie, M. Vojdani, F. Sedaghat and M. Vosoghi, "Assessment of candida species colonization and denture-related stomatitis in complete denture wearers," *J. Med. Mycol.*, **49**, 208-211 (2011a).

Zomorodian, K., M. J. Rahimi, K. Pakshir, M. Motamedi, M. R. Ghiasi and H. J. Rezashah, "Determination of antifungal susceptibility patterns among the clinical isolates of Candida species," *J. Global. Infect. Dis.*, **3**, 357-360 (2011b).

Received: April 17, 2017.

Sent to Subject Editor: April 27, 2017.

Accepted: April 5, 2018.

Recommended by Subject Editor: Maria Luján Ferreira