
81

AN EFFICIENT MAPPING STRATEGY FOR PARALLEL
PROGRAMMING

J.L. ORTEGA-ARJONA† and H. BENITEZ-PEREZ‡

† Departamento de Matemáticas, Facultad de Ciencias, UNAM, México. jloa@ciencias.unam.mx
‡ Departamento de Ingeniería en Sistemas Computacionales y Automatización, IIMAS, UNAM, México.

 hector@uxdea4.iimas.unam.mx

Abstract Obtaining an effective execution of a
parallel system requires that the mapping of the pro-
cesses (of the parallel software) on the processors (of
the parallel hardware) is efficiently performed.
Hence, this paper presents an efficient mapping
strategy based on optimizing communications be-
tween processes as well as load balancing process
distribution onto an arbitrary processor network.
Such a mapping strategy is developed as a parallel
program, based on the simultaneous execution of lo-
cal, independent processes. This fact contrasts with
many other approaches for solving the mapping
problem, like simulated annealing, heuristic search,
and others, which require a centralized control for
the mapping. In this paper, it is shown that the pre-
sent mapping strategy is efficient enough when ap-
plied to two different mapping problems. Based up-
on an experimental setup, it is possible to review this
mapping strategy following the related impact.

Keywords Parallel programming, mapping
problem, mapping strategy.

I. INTRODUCTION – MAPPING AND THE
MAPPING PROBLEM

Mapping and the mapping problem are commonly de-
fined as follows (Bokhari, 1981): “Suppose a problem
made up of several modules that execute in parallel is to
be solved on an incompletely connected array. When
assigning modules to processors, pairs of modules that
communicate with each other should be placed, as far as
possible, on processors that are directly connected. We
call the assignment of modules to processors a mapping
and the problem of maximizing the number of pairs of
communicating modules that fall on pairs of directly
connected processors the mapping problem.”

In topological terms, the mapping problem refers to
find whether a graph that represents the system of
communicating processes can be mapped onto a graph
representing the processor network, so that neighboring
processes are allocated on neighboring processors. Nev-
ertheless, even though this seems simple enough, the
mapping problem is known to be NP-complete
(Bokhari, 1981). Therefore, it seems useless trying to
propose exact algorithms for solving the mapping prob-
lem. Instead, only mapping strategies that are able to ef-
ficiently obtain suboptimal solutions have been pro-
posed.

Let us consider that a parallel program is defined as
the specification of a set of processes executing simul-

taneously, and communicating among themselves to
achieve a common objective (Hoare, 1978). Based on
this definition, a parallel software program can be repre-
sented in the form of a graph, in which each process is a
vertex, and each communication between any two pro-
cesses is an edge. In a similar way, a parallel hardware
or processor network can be represented as a graph, in
which now each processor is a vertex and each inter-
connection between any two processors is an edge. The
mapping problem, hence, reduces to embedding the
software graph into the hardware graph.

Nevertheless, since mapping should provide a cer-
tain distribution of the processes onto the processors so
the most efficient execution is obtained; two optimiza-
tion issues have to be considered:

Load balancing. The processes have to be mapped
onto the processors so the processing load caused
by all processes is fairly distributed over all proces-
sors. In such a situation, the parallel system is con-
sidered to be balanced.
Communication optimization. The communications
between any two processes should be distributed as
evenly as possible over all connections between
processors. When this is the case, it is said that
communications are optimal.

Regarding the second issue above, optimizing com-
munications means that neighboring processes should
be mapped onto neighboring processors. Otherwise, for
any communication between any two processes, more
than one connection has to be used. This produces a
communication overhead due to communication re-
emission, increasing overall execution time of the paral-
lel program. Moreover, communication re-emission also
causes load on the intermediate processors, since pro-
cessing in needed for routing a communication until it
reaches its final destination, and also tends to increase
overall execution time of the parallel system. Neverthe-
less, it is commonly not possible to map every neighbor-
ing process onto neighboring processors. Thus, the pro-
cesses should be allocated so that the overall communi-
cation costs are kept as minimal as possible.
A. The Mapping Problem: A Formal Description
For the current purposes, and for obtaining a more for-
mal definition of the mapping problem, let us assume
the following features of the parallel system:

The parallel hardware platform has a distributed
memory organization. Each processor has its own
local, private memory.

