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Abstract−− Process control represents an im-
portant tool for meeting product quality, process 
safety and environmental regulation. Different con-
trol strategies have been recently proposed in the lit-
erature; however, internal model control (IMC) has 
received great attention. Fractional calculus repre-
sents a fast growing field involving non-integer order 
derivatives. The aim of this work is the application of 
fractional calculus to develop generalized internal 
model control loops transfer functions, which is pre-
sented in two different approaches: firstly, the pro-
cess model is considered perfect, i.e., equal to the in-
ternal model; secondly, the internal model is de-
scribed by fractional transfer function. Simulation 
results showed that the proposed generalization 
could successfully control an industrial oven and a 
biochemical reactor described by fractional models, 
allowing better results when compared to integer or-
der IMC. 
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I. INTRODUCTION 
Control systems play a key role in chemical and bio-
chemical plants operation focusing on high production 
meeting product quality, process safety and environ-
mental regulation, (Lenzi et al., 2005). Literature re-
ports different conventional control algorithms, which 
have been successfully applied to the control of indus-
trial systems (Seborg, 1999), being internal model con-
trol (IMC) originally reported by Garcia and Morari 
(1982). It must be highlighted that IMC is a model-
based design technique and it also allows model uncer-
tainty and trade-offs between performance and robust-
ness to considered in a more systematic fashion (Zheng 
and Hoo, 2004). Literature also reports extensions of 
IMC to control of nonlinear systems (Nitsche et al., 
2007), tuning rules (Vilanova, 2008), gain scheduled 
control (Xie and Eisaka, 2008), control of unstable sys-
tems (Wang et al., 2001), use of IMC in feedforward 
control loops (Mawire and McPherson, 2008) and appli-
cations with fuzzy logic (Duan et al., 2008), among oth-
ers. 

Fractional differential order equations represent a 
fast growing research field nowadays (Das, 2008). Dif-
ferent applications of fractional calculus have been re-

ported, i.e., diffusion studies (Lenzi et al., 2006), rheol-
ogy (Craiem et al., 2008), process identification (Isfer et 
al., 2010a), process control (Isfer et al., 2010b), 
electroanalytical chemistry (Oldham and Spanier, 
2006), among others (Hilfer, 2000). Further details re-
garding the formalism of fractional calculus are beyond 
the scope of this work and can be found elsewhere 
(Oldham and Spanier, 2006). Fractional control has 
been successfully applied to mechanical (Pommier et 
al., 2002) and eletromechanical systems (Sabatier et al., 
2004). The use of IMC control and fractional calculus 
was firstly reported by Valerio and Sa da Costa (2006). 
In their manuscript, IMC control was only used as an al-
ternative tool for fractional PID controller tuning. To 
the best of our knowledge, applications of IMC control 
loops (Brosilow and Joseph, 2002) only use classical 
calculus, no studies of IMC control loops involving 
fractional calculus were found in the open literature. 

The aim of this work is the application of fractional 
calculus to develop generalized internal model control 
loops transfer functions. The study is divided into two 
parts. In the first, the process model is considered per-
fect, i.e., equal to the internal model. In the second part, 
the internal model is described by fractional transfer 
function. Finally, the proposed generalization is applied 
to simulation studies in order to control an industrial 
oven and a biochemical reactor described by fractional 
models. 

II. THEORETICAL FRAMEWORK 
A fractional derivate can be obtained by several ap-
proaches. However, in this work, only the Caputo repre-
sentation, presented bellow, will be considered.  
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where m < β < m+1; β ∈ℜ; m ∈ℵ. 
The first advantage of this representation is the fact 

that initial conditions of the fractional differential equa-
tions can be expressed in terms of integer order deriva-
tives, which usually have physical interpretation. Sec-
ondly, for this representation, the fractional derivate of a 
constant function is zero allowing the use of the classi-
cal deviation variables approach, simplifying the solu-
tion of the mathematical problem. The IMC loop con-
sidered for this work is presented by Fig. 1. 

The transfer functions of the controller and actuator 
can be grouped into only one term given by their prod-


