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Abstract— Tensorial equations are derived for
a laminar and attached boundary layer flow
with null pressure gradient in the normal direc-
tion to a smooth three-dimensional surface. An
incompressible, isothermal and viscous fluid of
Newtonian type is assumed. Covariant deriva-
tives in the three dimensional Euclidean do-
main are employed, where the surface cur-
vature terms are implicitly included in the
Christoffel symbols with the aim of writing the
boundary layer equations in an invariant form
irrespective to the particular choice of the co-
ordinate system. These equations are covariant
under a linear coordinate transformation on the
two surface coordinates, and a scaling along the
normal direction to the surface. As a test case,
the boundary layer near a sphere in an axisym-
metrical steady flow is numerically computed
using a pseudo-spectral approach.

Keywords— boundary-layer equations, lami-
nar steady flow, incompressible viscous fluid,
three-dimensional surfaces, tensor analysis.

I. INTRODUCTION

As it is well known, mechanical devices may require the
calculation of fully three-dimensional boundary lay-
ers (e.g. see Schlitchting and Gersten, 2004), as those
associated with flow inside turbomachines (Lakshmi-
narayana, 1995), horizontal-axis wind turbine blades
(Prado, 1995), laminar flow technology (Stock, 2006)
or aerospace technology (Dwoyer et al., 1978), among
other cases. The laminar boundary layer equations
for three-dimensional surfaces are well-known (e.g. see
Cebeci and Cousteix, 1999; Dey, 2001). In any case,
there are curvature effects that do not disappear as
they do in the two-dimensional case (Reed and Lin,
1993). In fact, these curvature effects are present
through the (local) principal curvatures of the surface.
If one of them is null the boundary layer equations
are independent of the curvature effects, as in planes,
yawed infinite cylinders or wings (Pai, 1956).
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There is nothing special about a particular system
of coordinates, so a physical or geometrical law be-
hind the equations for the boundary layer flow should
be independent of them. The related equation is often
first presented in Cartesian coordinates, and its dif-
ferential form is typically presented in a coordinate
independent system using vector notation based on
the nabla operator (German, 2007). With the coor-
dinate invariant form known, the solution is usually
approached by selecting a particular coordinate sys-
tem, e.g. Cartesian, cylindrical, or spherical ones. In
order to determine a differential equation in a selected
coordinate system, the nabla operator is expressed in
terms of partial derivatives with respect to the cho-
sen coordinates, or alternatively, the related operators
are obtained through a tedious coordinate transforma-
tion from the well known Cartesian form. In this way,
coordinate independent expressions of these equations
can be cast in a specific form from which analytical
and numerical solutions can be pursued. An alterna-
tive although equivalent approach to posing coordi-
nate invariant equations is to employ a tensorial rep-
resentation. As it is well known, a tensor equation is
a coordinate invariant equation where the monomials
have to be tensors of a same order and, in component
format, all terms must contain the same free indices.
Thus, tensorial equations, like those written in terms
of the nabla operator, are form invariant, or covariant,
with respect to regular curvilinear coordinate trans-
formations. As in the case with the nabla form, op-
erations such as the gradient and divergence are well
defined. However their representation is in terms of
the resource of tensor calculus. Besides the fact that
both approaches are equivalents, the tensor approach
often provides a more tractable and compact method
for dealing with transformations among regular coor-
dinate systems, since the relationships between the dif-
ferential equation and the geometry can be a bit more
clean than the nabla operator approach. For instance,
a differential equation can be cast in terms of a partic-
ular set of coordinates through the specification of the



