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Abstract— This paper introduces a method
to achieve reltive error control in Quantized
State System (QSS) methods. Based on the
use of logarithmic quantization, the proposed
methodology solves the problem of quantum se-
lection.
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I. INTRODUCTION

Numerical integration of ordinary differential equa-
tions (ODEs) is a topic of permanent research and
development. Based on classic methods like Eu-
ler, Runge-Kutta and Adams and impulsed with the
development of modern and fast computers, several
variable-step and implicit ODE solver methods were
introduced (Hairer et al., 1993; Hairer and Wanner,
1991; Cellier and Kofman, 2006).

Simultaneously, different software simulation tools
implementing those modern methods have been de-
veloped. Matlab/Simulink (Shampine and Reichelt,
1997) and Dymola (Elmqvist et al., 1995) can be men-
tioned among the most popular and efficient general
purpose ODE simulation packages.

In spite of the several differences between the men-
tioned ODE solvers, all of them share a property: they
are based on time discretization. This is, they give a
solution obtained from a difference equation system,
i.e. a discrete-time model.

A completely different approach started to develop
since the end of the 90’s, where time discretization is
replaced by state variables quantization. As a result,
the simulation models are not discrete time but dis-
crete event systems. The origin of this idea can be
found in the definition of Quantized Systems (Zeigler
et al., 2000).

This idea was then reformulated with the addition
of hysteresis —to avoid the appearance of infinitely fast
oscillations— and formalized as the Quantized State
Systems (QSS) method for ODE integration in (Kof-
man and Junco, 2001). This was followed by the defini-
tion of the second order QSS2 method (Kofman, 2002),
the third order QSS3 method (Kofman, 2006), a first
order Backward QSS method (BQSS) for stiff systems
(Migoni et al., 2007), and a first order Centered QSS
for marginally stable systems.

The QSS-methods show some important advantages
with respect to classic discrete time methods in the
integration of discontinuous ODEs (Kofman, 2004),
sparsity exploitation (Kofman, 2002), explicit integra-
tion of stiff and marginally stable systems (Migoni
et al., 2007), absolute stability, and the existence of
a global error bound (Cellier and Kofman, 2006).

One of the major drawbacks of the QSS methods is
the need of choosing a quantization parameter (called
quantum) for each state variable, as the efficience and
accuracy of the simulation depends strongly on this
choice. The problem is also related to the fact that the
methods intrinsically control the absolute error instead
of the relative error as classic variable step methods do.

This work shows that the use of time varying quan-
tization, proportional to the magnitude of each state
variable (i.e., logarithmic quantization), leads to an
intrinsic relative error control in the QSS methods.
Moreover, it will be shown that the relative error is
approximately proportional to the constant factor that
relates the quantum with the state magnitude. This
property will permit selecting directly the relative tol-
erance as a global property of the simulation (as it is
done in discrete time variable step methods).

The paper is organized as follows. After introduc-
ing some notation, Section II presents the principles of
quantization based integration and the QSS methods.
Then, Section III introduces the main result (i.e., the
relationship between logarithmic quantization and rel-
ative error control) and Section IV apply these results
to two simulation examples.

A. Notation and Preliminaries

In the sequel, | M| £ {|m; |}, Re(M) £ {Re(m;;)}
and Im(M) £ {Im(m;;)} denote the elementwise
magnitude, real part and imaginary part, respectively,
of a (possibly complex) matrix or vector M. Also,
z < y (r < y) denotes the set of componentwise
(strict) inequalities between the components of the real
vectors z and y, and similarly for z > y (z > y). Ac-
cording to these definitions, it is easy to show that

lz+yl <zl +lyl, [Mz|<|M][-|«|, (1)

whenever z,y € C™ and M € C™*",
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