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Abstract— This paper introduces a new nu-
merical method for integration of ordinary dif-
ferential equations. Following the idea of quan-
tization based integration, i.e., replacing the
time discretization by state quantization, this
new method performs a third order approxima-
tion allowing to achieve better accuracy than
their first and second order predecessors. It is
shown that the new algorithm satisfies the same
theoretical properties of the previous methods
and also shares their main advantages in the
integration of discontinuous systems.

Keywords— Hybrid systems, ODE integra-
tion, Discrete Event Systems.

I. INTRODUCTION

Numerical integration of ordinary differential equa-
tions (ODEs) is a topic which has advanced signif-
icantly with the appearance of modern computers.
Based on classic methods like Euler, Runge–Kutta,
Adams, etc., several variable–step and implicit ODE
solver methods were developed (Hairer et al., 1993;
Hairer and Wanner, 1991). Simultaneously, several
software simulation packages have been developed im-
plementing these algorithms. Among them, Mat-
lab/Simulink (Shampine and Reichelt, 1997) is proba-
bly the most popular and one of the most efficient.

In spite of the several differences between the men-
tioned ODE solver algorithms, all of them share a
property: they are based on time discretization, giving
a solution obtained from a difference equation system
(i.e., a discrete–time model).

A completely different approach for ODE numerical
integration started to develop since the end of the 90’s,
in which time discretization is replaced by state vari-
ables quantization. As a result, the simulation models
are not discrete time but discrete event.

The origin of this idea can be found in the definition
of Quantized Systems (Zeigler and Lee, 1998). Quan-
tized Systems were reformulated with the addition of
hysteresis –to avoid the appearance of infinitely fast
oscillations– and formalized as a numerical algorithm
for ODE’s by Kofman and Junco (2001), where the
Quantized State Systems (QSS) and the QSS method
were defined.

The following step was the definition of the method
of second order quantized state systems (QSS2) (Kof-
man, 2002), and then both methods were extended
to the simulation of differential algebraic equations
(DAEs) (Kofman, 2003) and discontinuous systems
(Kofman, 2004).

The discrete event nature of these methods make
them particularly efficient in the last case, and a con-
siderable reduction of computational costs with re-
spect to the most sophisticated discrete time methods
can be observed.

Despite their simplicity, the QSS and QSS2 meth-
ods satisfy some strong stability, convergence and error
bound properties, and they intrinsically exploit spar-
sity in a very efficient fashion.

This paper continues the previous works by formu-
lating the method of third order quantized state sys-
tems (QSS3) which permits improving the accuracy
of QSS and QSS2 conserving their main theoretical
and practical advantages. An additional advantage of
QSS3 is that the choice of the quantum becomes less
critical than in the lower order methods since it can
be adopted in a conservative fashion without affecting
considerably the number of calculations.

After a brief introduction recalling the principles of
quantization based integration, the definition of the
QSS3 method will be introduced. Then, we shall prove
that it is legitimate, i.e., that it cannot produce a
Zeno–like behavior, and we shall deduce the input–
output relationships of the basic components of QSS3
(quantized integrators and static functions). Then, af-
ter a brief discussion about the theoretical properties
of QSS3, two relatively complex simulation examples
will be introduced.

II. QUANTIZATION BASED
INTEGRATION

A. QSS–Method

Consider a time invariant ODE in its State Equation
System (SES) representation:

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is
an input vector, which is a known piecewise constant
function.
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