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Abstract—— A motion control strategy for robot
manipulators, with inverse dynamics and non-linear
proportional-derivative gains is presented. On
account of a possible interaction of the robot with
the environment, impedance is incorporated to
modify the robot’s motion references according to
the interaction force. The gains, that are non-linear
state functions, allow to improve robot performance
and to prevent actuator saturation. It is proved that
an asymptotically stable closed-loop system is
obtained with the proposed controller. Simulation
results on a 3-dof robot show a good performance of
the controller with variable gains, as opposed to that
of a constant gain PD controller.
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L. INTRODUCTION

One of the basic problems in robot control is the so-
called motion control, when a robot manipulator is
required to follow a pre-established trajectory.

Current present-day manipulators use proportional-
derivative controllers (PD) or proportional-integral-
derivative controllers (PID) in closed-loop systems in
order to reach the desired configurations. For an
updated reference on PID controllers, see (Benett, 2001)
and (Astrdm and Hégglund, 2001). It has been proven
that PID controllers, despite their widespread use, do
not show global asymptotic stability when controlling a
robotic manipulator (Wen and Murphy, 1990). Various
motion controllers with  rigorous stability
demonstrations can be found in the literature: (Sciavicco
and Siciliano, 2000; Craig, 1989) among others.

The PD controller with gravity compensation
produces a global asymptotically stable closed-loop
system through a trivial selection of the proportional
and derivative gains (Takegaki and Arimoto, 1981). The
PD+ controller, introduced by Koditschek (Koditschek,
1984) is both simple and attractive. Its control structure
is based on a linear PD feedback loop plus a specific
compensation of robot dynamics. The first stability
analysis of a PD+ controller was done by Paden and
Panja (1988), who termed it PD+ control. Later,

Whitcomb et al. (1993) present a rigorous stability
analysis by introducing a Lyapunov function in an
adaptive control context.

The global asymptotic stability analysis of a closed-
loop system using the above-cited controllers has been
carried out in the above mentioned papers by
considering a selected set of constant gains of the
controllers. This characteristic may constrain the
application of these controllers when, in addition to
asymptotic stability, a high performance of the control
system is required as well. To have a good performance
in manipulator control with actuator constrains implies
to implement variable gains in the controllers. Variable-
gain PD controllers for position and motion control of
manipulators have been implemented in (Kelly and
Carelli, 1996) and, recently, Santibafiez et al. (2000)
presented a variable-gain PD+ controller that uses fuzzy
logic.

We present here an inverse dynamics controller with
non-linear PD gains, which allows for motion and
impedance control. It avoids saturation of control
actions and improves the performance for small control
errors.

The work is organised as follows. Section II
describes the model and control scheme along with its
stability analysis. The application of a control algorithm
to a 3-dof manipulator is presented in Section III, and
the conclusions in Section IV.

II. ROBOT MODEL AND CONTROLLER
DESIGN

A Robot Model

With no perturbations present, the joint-coordinates
dynamic model of a robot manipulator interacting with
the environment is:

t=M(q)i+C(q.4)qG+g(q)+0(q)+J (q)f, (D)

where 7 is the nx [ vector of torques or forces
applied on the joints, M(g)e R"™" is the manipulator’s
inertia matrix that is symmetric and positive definite;
C(q,q)e R™" is the matrix of centrifugal and Coriolis

forces; g(g)e " is the vector of gravitational torques
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